Recognition of DNA modified by trans-[PtCl2NH3(4-hydroxymethylpyridine)] by tumor suppressor protein p53 and character of DNA adducts of this cytotoxic complex

Časopis: FEBS JOURNAL 273, 301-314
Autoři: Stehlikova, K., Kasparkova, J., Novakova, O., Martinez, A., Moreno, V., Brabec, V.
Rok: 2006


trans-[PtCl2NH3(4-Hydroxymethylpyridine)] (trans-PtHMP) is an analogue of clinically ineffective transplatin, which is cytotoxic in the human leukemia cancer cell line. As DNA is a major pharmacological target of antitumor platinum compounds, modifications of DNA by trans-PtHMP and recognition of these modifications by active tumor suppressor protein p53 were studied in cell-free media using the methods of molecular biology and biophysics. Our results demonstrate that the replacement of the NH3 group in transplatin by the 4-hydroxymethylpyridine ligand affects the character of DNA adducts of parent transplatin. The binding of trans-PtHMP is slower, although equally sequence-specific. This platinum complex also forms on double-stranded DNA stable intrastrand and interstrand cross-links, which distort DNA conformation in a unique way. The most pronounced conformational alterations are associated with a local DNA unwinding, which was considerably higher than those produced by other bifunctional platinum compounds. DNA adducts of trans-PtHMP also reduce the affinity of the p53 protein to its consensus DNA sequence. Thus, downstream effects modulated by recognition and binding of p53 protein to DNA distorted by trans-PtHMP and transplatin are not likely to be the same. It has been suggested that these different effects may contribute to different antitumor effects of these two transplatinum compounds.