The role of aryl hydrocarbon receptor in regulation of enzymes involved in metabolic activation of polycyclic aromatic hydrocarbons in a model of rat liver progenitor cells

Autoři: Vondracek, J., Krcmar, P., Prochazkova, J., Trilecova, L., Gavelova, M., Skalova, L., Szotakova, B., Buncek, M., Radilova, H., Kozubik, A., Machala, M.
Rok: 2009


In contrast to hepatocytes, there is only limited information about the expression and activities of enzymes participating in metabolic activation of environmental mutagens, including polycyclic aromatic hydrocarbons (PAHs), in liver progenitor cells. In rat liver "stem-like" WB-F344 cell line, sharing many characteristics with rat liver progenitor cells, PAHs are efficiently activated to their ultimate genotoxic metabolites forming DNA adducts. The present study aimed to characterize expression/activities of enzymes of two major pathways involved in the metabolism of benzo[a]pyrene (BaP): cytochrome P450 (CYP) family 1 enzymes and cytosolic aldo-keto reductases (AKRs). We report here that, apart from induction of CYP1A1 and CYP1B1 expression and the corresponding enzymatic activity, both BaP and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced rat 3 alpha-hydroxyrsteroid dehydrogenase(AKR1C9) expression and activity. In contrast, the aldehyde reductase AKR1A1 was not induced by either treatment. Thus, both CYP1 and AKR metabolic pathways were inducible in the model of liver progenitor cells. BaP and TCDD were efficient inducers of NAD(P)H:quinone oxicloreductase 1 (NQO1) expression and activity in WB-F344 cells, a principal enzyme of cellular antioxidant defense. Both compounds also induced expression of transcription factor NRF2, involved in control of enzymes protecting cells from oxidative stress. However, although BaP induced a significant formation of reactive oxygen species, it did not induce expression of heme oxygenase-1, suggesting that induction of oxidative stress by BaP was limited. Using shRNA against the aryl hydrocarbon receptor (AhR), we found that similar to CYP1A1 and CYP1B1, the AKR1C9 induction was AhR-dependent. Moreover, constitutive AKR1C9 levels in AhR-deficient rat BP8 hepatoma cells were significantly lower than in their AhR-positive 5L variant, thus supporting possible role of AhR in regulation of AKR1C9 expression. Taken together, both CYP1 and AKR1C9 appear to be AhR-regulated metabolic pathways, which may contribute to formation of pro-carcinogenic PAH metabolites in liver progenitor cells.