Inhibition of SAH-hydrolase activity during seed germination leads to deregulation of flowering genes and altered flower morphology in tobacco

Published: MOLECULAR GENETICS AND GENOMICS 285, 225-236 Authors: Fulnecek, J., Matyasek, R., Votruba, I., Holy, A., Krizova, K., Kovarik, A. Year: 2011


Developmental processes are closely connected to certain states of epigenetic information which, among others, rely on methylation of chromatin. S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are key cofactors of enzymes catalyzing DNA and histone methylation. To study the consequences of altered SAH/SAM levels on plant development we applied 9-(S)-(2,3-dihydroxypropyl)-adenine (DHPA), an inhibitor of SAH-hydrolase, on tobacco seeds during a short phase of germination period (6 days). The transient drug treatment induced: (1) dosage-dependent global DNA hypomethylation mitotically transmitted to adult plants; (2) pleiotropic developmental defects including decreased apical dominance, altered leaf and flower symmetry, flower whorl malformations and reduced fertility; (3) dramatic upregulation of floral organ identity genes NTDEF, NTGLO and NAG1 in leaves. We conclude that temporal SAH-hydrolase inhibition deregulated floral genes expression probably via chromatin methylation changes. The data further show that plants might be particularly sensitive to accurate setting of SAH/SAM levels during critical developmental periods.